Stetiger Stellantrieb CHEOPS DRIVE

Inhaltsverzeichnis

1	Funkti	onseigenschaften	4
	1.1 V	⁷ orteile	4
	1.2 H	Iardwareversionen	5
	1.3 U	Interschiede	6
	1.4 A	nwendungsmöglichkeiten	7
	1.5 B	Besonderheiten	7
2	Techn	ische Daten	8
	2.1 A	llgemein	8
3	Das A	pplikationsprogramm "CHEOPS DRIVE V1.2"	9
	3.1 A	uswahl in der Produktdatenbank	9
	3.2 P	arameterseiten	9
	3.3 K	Communikationsobjekte	10
	3.3.1	Eigenschaften der Objekte	10
	3.3.2	Beschreibung der Objekte	11
	3.4 P	'arameter	13
	3.4.1	Ventileigenschaften	13
	3.4.2	Sicherheit und Zwangsbetrieb	14
	3.4.3	Externe Schnittstelle	16
	3.4.4	Benutzerdefinierte Ventileigenschaften	17
	3.4.5	Eigene Ventilkennlinie	21
	3.4.6	Lineare Ventilkennlinie	23
4	Inbetri	iebnahme	24
	4.1 In	nstallation und automatische Adaption (Eichfahrt)	24
	4.2 E	lichstrategien	25
	4.2.1	Strategie 1, Standard	25
	4.2.2	Strategie 2, Automatisch (Nur für Geräte ab Softwareversion 61)	25
	4.2.3	Strategie 3, mit definiertem Ventilhub. (Nur für Geräte ab Softwareversion 61)	25
	4.2.4	LED Anzeige während der Eichfahrt	26
	4.3 B	Baustellenfunktion	27
	4.4 Über	prüfung der 0 % Position	27
5	Anhan	1g	28
	5.1 V	entile und Ventildichtungen	28
	5.1.1	Ventilaufbau	28
	5.1.2	Ventile und Ventildichtungen	28
	5.2 B	Begrenzung der Stellgröße	29
	5.2.1	Maximale Stellgröße	29
	5.2.2	Minimale Stellgröße	29
	5.3 N	Iaximale Stellgröße ermitteln	30
	5.3.1	Anwendung	30
	5.3.2	Prinzip	30
	5.3.3	Praxis	30
	5.4 Ü	Iberwachung der Stellgröße	31
	5.4.1	Anwendung	31
	5.4.2	Prinzip	31
	5.4.3	Praxis	31

	5.5	Externe Schnittstelle	. 32
	5.5.1	Anschlüsse	. 32
	5.5.2	2 Eingang E1	. 32
	5.5.3	B Eingang E2	. 32
6	Trou	ibleshooting	. 33
	6.1	Fehlercode auslesen	. 35
	6.2	Endpositionen überprüfen	. 37
	6.3	Adapterring überprüfen	. 38
	6.3.1	I Im gedrückten Zustand	. 38
	6.3.2	2 Im ungedrückten Zustand	. 38
	6.4	Auslesen der Software Versionsnummer	.40
	6.4.1	Beispiele verschiedener Versionen	.41
7	Glos	ssar	. 42
	7.1	Ventilhub	. 42

1 Funktionseigenschaften

Der stetige Stellantrieb Cheops drive kann über Cheops control oder über einen stetigen Raumtemperaturregler angesteuert werden.

Cheops drive besitzt 2 Eingänge für Präsenzsensor und Fensterkontakt. Der Status der Eingänge kann auf den Bus gesendet werden.

1.1 Vorteile

- Stufenlose Ventilstellung durch stetige Stellgröße
- Anzeige der tatsächlichen Ventilposition über 5 LEDs
- Notprogramm bei Ausfall der Stellgröße (z.B. Raumthermostat außer Betrieb)
- Beliebige Zwangsposition über Objekt möglich
- Ermittlung der <u>maximalen Stellgröße</u>
- Alarm bei Stellgrößenausfall
- Ventilschutzprogramm
- Eingang für Fensterkontakt
- Eingang für Präsenzkontakt
- Begrenzung der Stellgröße
- Präzise Anpassung an jedes Ventil
- Betrieb sowohl mit normalen als auch mit invertierten Ventilen
- <u>Baustellenfunktion</u> für den Betrieb ohne Applikation
- großer Ventilhub ermöglicht Anpassung an nahezu alle Ventile
- einfache Montage mit beiliegendem Ventiladapter

1.2 Hardwareversionen

Es gibt 2 Hardware-Versionen von Cheops, *vor* und *ab 2008*, mit teilweise abweichenden Eigenschaften.

Die Version bis 2008 (links) besitzt 2 rechtwinklig zueinander montierte Leiterplatten. Die Version ab 2008 (rechts) besitzt nur eine Leiterplatte.

Abweichende Eigenschaften zwischen beiden Versionen werden in diesem Handbuch mit "*bis 2008*" und "*ab 2008*" gekennzeichnet.

Verbreitete Software (Firmware) Versionen:

(angezeigt durch die LEDs) siehe Auslesen der Software Versionsnummer

Geräte bis 2008	Geräte ab 2008
V110	V44 seit März 2008
V121	V61 seit Mai 2008

1.3 Unterschiede

Geräte bis 2008	Ab 2008: Version V 44	Ab 2008: V61
 Nur eine Eichstrategie Nach Reset werden die alten Positionen übernommen (kleine Eichfahrt) Ventilschutz alle 24 h falls keine Stellgrößenänderung erfolgt ist. Baustellenfunktion immer aktiv (25% nach Anpassung) Fehlercode in \$1FB Lauflicht bei bekanntem Fehler 	 Neue Eichstrategie: Endpunkt über Kraft, mit fest eingestelltem Hub. Cheops führt immer 2 Eichfahrten durch und vergleicht die Ergebnisse Baustellenfunktion wird nach dem 1. Download definitiv gelöscht. Keine Fehlercodes mehr Geänderte LED Anzeige während Eichfahrt Bei Auftreten eines Fehlers werden automatisch Korrektur- Maßnahmen gestartet. 	 Neue Eichstrategie: Anfangspunkt als Position, Endpunkt über Kraft. Ventilschutz nur noch alle 7 Tage Eichstrategie Code in Adresse in \$1FB abgelegt (Achtung: Zahl kann ähnlich wie die früheren Fehler-Codes aussehen).

1.4 Anwendungsmöglichkeiten

Cheops drive wird in Verbindung mit einem stetigen Raumtemperaturregler verwendet. Dazu wird die Stellgröße des Raumtemperaturreglers (RTR) mit Objekt 0 verbunden. Um bei geöffnetem Fenster eine unnötige Energieverschwendung zu vermeiden, sollte die Heizleistung in diesem Fall reduziert werden. Dazu müssen Fensterkontakte eingesetzt werden. Da Cheops drive oftmals in der Nähe eines Fensters ist, bietet es sich an, hierfür die <u>externe Schnittstelle</u> des Gerätes zu nutzen. Objekt 5 wird in diesem Fall mit dem Frostschutz- oder Fensterobjekt des Raumtemperaturreglers verbunden. In einer einfachen Lösung kann Objekt 5 auch mit Objekt 1 verbunden werden. So wird beim Öffnen des Fensters das Ventil in eine zuvor parametrierte Stellung gefahren.

Über den zweiten Eingang der externen Schnittstelle kann ein Schalter zur Präsenzmeldung angeschlossen werden. Objekt 6 wird in diesem Fall mit dem Komfortobjekt des Raumtemperaturreglers verbunden.

Objekt 4 wird von einer Schaltuhr oder einem Schalter angesteuert. Durch eine 1 auf dieses Objekt schaltet Cheops drive in den Sommerbetrieb d.h. das Ventil bleibt geschlossen. Stellgrößen des RTRs werden ignoriert, so wird verhindert, dass z.B. morgens wenn die Solltemperatur noch nicht erreicht ist, geheizt wird.

Cheops drive kann die Funktion des RTRs <u>überwachen</u>. Dazu erwartet Cheops drive regelmäßig Stellgrößentelegramme des RTRs. Falls diese Telegramme ausfallen, kann über Objekt 7 eine Alarmmeldung erfolgen. Diese kann zu Wartungszwecken in einer Zentrale ausgewertet werden.

Ist ein Heizkessel mit einer Steuerung zur bedarfsgeführten Vorlaufsregelung vorhanden, so werden die Objekte 3 (<u>maximale Position</u>) aller Cheops drive und der entsprechende Eingang der Kesselsteuerung mit einer gemeinsamen Gruppenadresse verbunden.

1.5 Besonderheiten

• Überwachung der Stellgröße

Cheops drive bietet die Möglichkeit, die Funktion des Rautemperaturreglers zu kontrollieren. Dazu wird der Zeitabstand zwischen 2 Stellgrößentelegramme überwacht und bei <u>Ausfall der Stellgröße</u> ein Alarmtelegramm ausgelöst.

• <u>Ermittlung der maximalen Stellgröße</u> (= maximale Position)

Zur Anpassung der Vorlauftemperatur, kann Cheops drive eine Rückmeldung über den aktuellen Energiebedarf an den Heizkessel senden.

Dieser kann dann bei geringem Bedarf seine Temperatur reduzieren.

Cheops drive verfügt über 2 externe Eingänge für einen Präsenz- und einen Fensterkontakt. Diese Eingänge können auf den Bus gesendet und als Auslöser für Frostschutz- oder Komfortbetrieb verwendet werden.

2 Technische Daten

2.1 Allgemein

Spannungsversorgung:	Busspannung	
Zulässige Betriebstemperatur:	0°C+ 50°C	
Laufzeit:	< 20s / mm	
Stellkraft:	> 120 N	
max. Reglerhub:	7,5 mm (lineare Bewegung)	
Erkennen der Ventil-Endanschläge:	Automatisch	
Linearisierung der Ventilkennlinie:	über Software möglich	
Schutzklasse:	III	
Schutzart:	EN 60529: IP 21	
Abmessungen:	HxBxT 82 x 50 x 65 (mm)	
Adapterringe passend für:	Danfoss RA, Heimeier, MNG, Schlösser ab 3/93, Honeywell, Braukmann, Dumser (Verteiler), Reich (Verteiler), Landis + Gyr, Oventrop, Herb, Onda	
Typischer Stromverbrauch	Motor aus:< 5 mAMotor an, Dichtung nicht gepresst:10 mAMotor an, Dichtung gepresst:1215 mA(je nach Kraft)	

3 Das Applikationsprogramm "CHEOPS DRIVE V1.2"

3.1 Auswahl in der Produktdatenbank

Hersteller	Theben AG
Produktfamilie	Stellantriebe
Produkttyp	Stetiger Stellantrieb
Programmname	Cheops drive V1.2

Die ETS Datenbank finden Sie auf unserer Internetseite: http://www.theben.de

3.2 Parameterseiten

Funktion	Beschreibung
Ventileigenschaften	Standard / benutzerdefinierte Ventileinstellungen und Senden der
	Ventilposition
Sicherheit und	Überwachung der Stellgröße, Notprogramm, Stellgrößenausfall,
Zwangsbetrieb	Zwangsbetrieb, maximale Stellgröße
Externe Schnittstelle	Eingänge für Fenster- und Präsenzkontakt konfigurieren
Benutzerdefinierte	invertiertes Ventil, Feineinstellung der Ventilparameter, spezielle
Ventileigenschaften	Ventilkennlinien, Stellgrößenbegrenzung, Reaktion auf
	Stellgrößenänderungen
Eigene Ventilkennlinie	Profi-Parameter für Ventile mit bekannter Kennlinie
Lineare Ventilkennlinie	Parameter für hochwertige lineare Ventile

3.3 Kommunikationsobjekte

3.3.1 Eigenschaften der Objekte

Nr.	Funktion	Objektname	Тур	Verhalten
0	Position anfahren	Stellgröße	1 Byte EIS 6	empfangen
1	Zwangsposition anfahren	Zwangsposition	1 Bit	empfangen
2	aktuelle Ventilposition melden	aktuelle Ventilposition	1 Byte EIS 6	senden
3	maximale Position ermitteln	maximale Position	1 Byte EIS 6	senden und empfangen
4	Ventil im Sommer schließen	Sommerbetrieb	1 Bit	empfangen
5	Fensterstatus melden	Fensterkontakt	1 Bit	senden
6	Präsenzstatus melden	Präsenzkontakt	1 Bit	senden
7	Stellgrößenausfall melden	Stellgrößenausfall	1 Bit	senden

3.3.2 Beschreibung der Objekte

• Objekt 0 "Stellgröße"

Empfängt die vom Raumtemperaturregler vorgegebene Stellgröße (0...100%). Das Ventil wird dementsprechend positioniert.

• Objekt 1 "Zwangsposition"

Wird eine 1 auf dieses Objekt gesendet, so wird das Ventil in die zuvor parametrierte Position für Zwangsbetrieb gefahren (siehe <u>Sicherheit und Zwangsbetrieb</u>).

Das Ventil bleibt solange in dieser Stellung bis der Zwangsmodus durch eine 0 wieder aufgehoben wird. Danach wird die vor oder während Zwangsbetrieb gesendete Stellgröße angefahren. Diese Position wird erst dann verändert, wenn eine andere Stellgröße als die vor Zwangsbetrieb gültige Stellgröße empfangen wird.

Diese Betriebsart hat die höchste Priorität.

• Objekt 2 "aktuelle Ventilposition"

Sendet die tatsächliche Ventilposition (0...100%) auf den Bus. Diese Funktion kann je nach Bedarf (z.B. Fehlersuche) freigegeben oder gesperrt werden. Für den Normalbetrieb ist dieses Objekt nicht notwendig.

• Objekt 3 "maximale Position"

Dieses Objekt hat je nach Parametrierung folgende Funktionen:

- 1. Die Stellgröße der anderen Stellantriebe (andere Räume) empfangen um sie mit der eigenen <u>vergleichen</u> zu können und die eigene Stellgröße an den Heizkessel senden, wenn sie höher als die anderen liegt.
- 2. Die eigene Stellgröße an die anderen Stellantriebe senden, um einen neuen Vergleich zu starten

• Objekt 4 "Sommerbetrieb"

Eine 1 auf dieses Objekt startet den Sommerbetrieb, d.h. die Stellgröße wird nicht mehr berücksichtigt und das Ventil bleibt zu.

Ist der <u>Ventilschutz</u> aktiviert, so wird er auch während Sommerbetrieb ausgeführt (siehe "Sicherheit und Zwangsbetrieb").

Das Ventil bleibt solange in der Stellung 0% bis der Sommerbetrieb durch eine 0 wieder aufgehoben wird.

Danach wird die vor oder während Sommerbetrieb gesendete Stellgröße angefahren. Diese Position wird erst dann verändert, wenn eine andere Stellgröße als die vor Sommerbetrieb gültige Stellgröße empfangen wird.

• Objekt 5 "Fensterkontakt"

Sendet den Status des Fensterkontakteingangs wenn dieser verwendet wird (siehe <u>Externe</u> <u>Schnittstelle</u>).

• Objekt 6 "Präsenzkontakt"

Sendet den Status des Präsenzkontakteingangs wenn dieser gewählt wurde (siehe Anhang <u>Externe Schnittstelle</u>).

Hinweis:

Das Fensterkontakt- und das Präsenzkontaktobjekt können über ihre Gruppenadresse mit dem Raumthermostat oder mit einem anderen Objekt des Gerätes verknüpft werden (siehe unten).

• Objekt 7 "Stellgrößenausfall"

Sendet ein Alarmtelegramm wenn innerhalb eines gegebenen Zeitraumes keine neue Stellgröße vom Raumtemperaturregler empfangen wurde. Dieses Objekt ist nur vorhanden, wenn der Parameter "Überwachen der Stellgröße" aktiviert wurde (siehe Parameterseite "<u>Sicherheit und Zwangsbetrieb</u>", Einstellungen zu Sicherheit: benutzerdefiniert und im Anhang: <u>Überwachung der Stellgröße</u>).

Beispiel Fensterkontakt:

Objekt 5 "Fensterkontakt" kann entweder mit Objekt 1 "Zwangsposition" von Cheops drive oder mit dem Objekt "Frostschutz" des Raumthermostats verknüpft werden. **Vorteil:** Wenn ein Fenster zum Lüften geöffnet wird, können die Heizkörper gedrosselt werden (zuvor parametrierte Ventilposition) um Heizenergie zu sparen.

Hinweis: Wenn der Fenstereingang mit der Zwangsposition verbunden wird und eine Zwangsposition von (oder nahe) 0% gewählt wurde, kann ein langes Öffnen des Fensters bei tiefen Außentemperaturen das Einfrieren des Heizkörpers zur Folge haben.

Beispiel Präsenzkontakt.

Objekt 6 "Präsenzkontakt" kann mit dem Objekt "Komfort" des Raumthermostats (z.B. Cheops control) verknüpft werden.

Vorteil: Wenn ein Raum betreten wird, in dem die Heizung abgesenkt ist, kann über einen Schalter der Raumthermostat auf Komfortbetrieb gesetzt werden.

3.4 Parameter

3.4.1 Ventileigenschaften

Bezeichnung	Werte	Bedeutung
Ventileinstellungen	Standard	für Normale Ventile und
		Anwendungen
	Benutzerdefiniert	Profi-
		Einstellungsmöglichkeiten
Senden bei Änderung der	nicht senden	soll die neue Ventilposition
Ventilposition	bei Änderung um 1 %	gesendet werden, wenn sie
	bei Änderung um 2 %	sich gegenüber dem zuletzt
	bei Änderung um 3 %	gesendeten Wert verändert
	bei Änderung um 5 %	hat?
	bei Änderung um 7 %	Wenn ja, ab welcher
	bei Änderung um 10 %	Abweichung?
	bei Änderung um 15 %	Diese Funktion ist im
		Normalbetrieb nicht
		notwendig und wird
		hauptsächlich für
		Diagnosezwecke verwendet.
		Bei Erreichen der
		vorgegebenen Ventilposition
		(Stellgröße) wird diese auch
		dann gesendet, wenn die
		gewählte Anderung seit dem
		letzen Telegramm nicht
		erreicht ist (außer bei "nicht
		senden")
zykl. Senden der	nicht zyklisch senden	Soll die aktuelle
Ventilposition	alle 2 min.	Ventilposition zyklisch
	alle 3 min.	gesendet werden?
	alle 5 min.	Wenn ja, in welchem
	alle 10 min.	Abstand?
	alle 15 min.	
	alle 20 min.	
	alle 30 min.	
	alle 45 min.	
	alle 60 min.	

3.4.2 Sicherheit und Zwangsbetrieb

Bezeichnung	Werte	Bedeutung
Einstellungen zur Sicherheit	Standard	keine Sicherheitseinstellungen
_		
	benutzerdefiniert	Überwachung der Stellgröße
		und Ventilschutz
Überwachen der Stellgröße*	nicht überwachen	Soll der Empfang der
	5 min.	Stellgröße vom
	10 min.	Raumtemperaturregler (RTR)
	15 min.	überwacht werden?
	20 min.	
	30 min.	Empfohlene Einstellung:
	45 min.	2x die Zykluszeit des RTR.
	60 min.	Siehe Überwachung der
		Stellgröße.
Ventilposition bei	0%	Einstellung für Notprogramm.
Stellgrößenausfall*	10%	Bei Stellgrößenausfall fährt
	20%	das Ventil in die hier
	30%	vorgegebene Position.
	40%	
	50%	Das Notprogramm wird
	60%	beendet, sobald eine neue
	70%	Stellgröße empfangen wird.
	80%	
	90%	
	100%	
Senden des Objektes	nur bei Stellgrößenausfall	wird nur gesendet, wenn das
Stellgrößenausfall*	_	Notprogramm aktiv ist:
		(Wert = 1).
	immer nach Ablauf eines	wird regelmäßig gesendet: Im
	Überwachungs-Zykluses	Normalbetrieb mit Wert 0, im
		Notprogramm mit Wert 1.
Ventilposition im	0%	Welche feste Position soll
Zwangsbetrieb	10%	angefahren werden, wenn das
	20%	Objekt Zwangsbetrieb aktiv
	30%	ist?
	40%	
	50%	Diese Funktion kann z.B.
	60%	beim Lüften verwendet
	70%	werden.
	80%	
	90%	
	100%	

Fortsetzung:					
Bezeichnung	Werte	Bedeutung			
Ventilschutz*	aktiv inaktiv	Diese Funktion verhindert ein Festsetzen des Ventils wenn			
		es über längere Zeit nicht			
		betätigt wird.			
		Das Ventilschutzprogramm (wenn aktiv) wird immer			
		dann ausgeführt, wenn sich			
		24h die Stellgröße nicht			
		geändert hat.			
		Das Ventil wird dabei einmal			
		komplett geöffnet und wieder			
		geschlossen.			
		LEDs night angegoist			
Sandan das Objekt	Nur wann aigana Stallgrößa	Ein alla Stallantriaha			
Maximala Stallgröße"	arößer ist	Fui ane Stenanthebe			
(für Kesselsteuerung)	grober ist				
	alle 2 min.	Zyklische Sendezeit für den			
	alle 3 min.	einzelnen Stellantrieb der den			
	alle 5 min.	Stellgrößenvergleich			
	alle 10 min.	regelmäßig neu auslösen soll			
	alle 15 min.				
	alle 20 min.				
	alle 30 min.				
	alle 45 min.				
	alle 60 min.				
		Diese Funktion wird benötigt, um den Energiebedarf dar			
		Gesamtanlage an den			
		Heizkessel zu übermitteln			

* Nur sichtbar bei **Einstellungen zu Sicherheit:** *benutzerdefiniert*

3.4.3 Externe Schnittstelle

Bezeichnung	Werte	Bedeutung
Funktion der ext. Schnittstelle	keine	Welche externen
	E1: Fensterkontakt, E2: keine,	Schnittstellen werden
	E1: Fensterkontakt, E2:	verwendet?
	Präsenz	
Art des angeschlossenen	Fenster offen - Kontakt	ermöglicht die Verwendung
Fensterkontakts	geschlossen,	sowohl von Öffner- als auch
	Fenster offen - Kontakt offen	von Schließerkontakten
Senden des Fensterstatus	nicht zyklisch senden	Soll der Zustand des
	alle 2 min.	angeschlossenen
	alle 3 min.	Fensterkontakts auf den Bus
	alle 5 min.	gesendet werden ?
	alle 10 min.	
	alle 15 min.	
	alle 20 min.	
	alle 30 min.	
	alle 45 min.	
	alle 60 min.	
Art des angeschlossenen	anwesend = Kontakt	ermöglicht die Verwendung
Präsenzkontakts	geschlossen,	sowohl von Öffner- als auch
	anwesend = Kontakt offen	von Schließerkontakten
Senden des Präsenzstatus	nicht zyklisch senden	Soll der Zustand des
	alle 2 min.	angeschlossenen
	alle 3 min.	Präsenzkontakts auf den Bus
	alle 5 min.	gesendet werden ?
	alle 10 min.	
	alle 15 min.	
	alle 20 min.	
	alle 30 min.	
	alle 45 min.	
	alle 60 min.	

3.4.4 Benutzerdefinierte Ventileigenschaften

Diese Parameterseite erscheint nur wenn auf der Seite "Ventileigenschaften" die benutzerdefinierten Ventileinstellungen gewählt werden.

Die angezeigten Parameter sind von der gewählten Strategie zur Ventilerkennung abhängig.

Bezeichnung	Werte	Bedeutung
Wirksinn des Ventils	normal, im gedrückten Zustand geschlossen.	für alle gängige Ventile
	invertiert, im gedrückten Zustand geöffnet	Anpassung an invertierte Ventile
Strategie zur Ventilerkennung	Standard	Standarderkennung für die meisten Ventilmodelle.
	Automatisch	Nur für Geräte ab Software V61.
		Das Ventil wird mit vordefinierter Kraft geschlossen (siehe unten, Parameter "Schließkraft für"). Die 0 % Position wird bei jeder Fahrt am Ventil überprüft und die "100 % offen" Stellung wird am Ventil gemessen.
	Mit definiertem Ventilhub	Nur für Geräte ab Software V61.
		Die 0 % Position wird bei jeder Fahrt am Ventil überprüft und die 100 % (offen) Position aus dem eingestellten Hub ermittelt.

Fortsetzung:

Bezeichnung	Werte	Bedeutung	
Strategie = Standard			
Zusätzliche Pressung der	079	Der eingestellte Wert	
Gummidichtung in 1/100mm	(Default = 20)	bestimmt die zusätzliche	
		Pressung in 1/100 mm.	
		Hiermit kann das Ventil um	
		einen definierten Weg	
		weiter zugedrückt werden	
		wenn es aufgrund der	
		Eigenschaften der	
		Gummidichtung nicht	
		hundertprozentig schließt.	
		Vorsicht: Um eine	
		Beschädigung der Dichtung	
		zu vermeiden, sollte der	
		Wert maximal in 10er	
		Schritten erhöht werden.	
		Finstellung	
		1 entspricht 1/100mm	
		10 entspricht 0.1 mm	
		20 entspricht 0,2 mm	
		usw	
		Siehe Anhang: Ventile und	
		Ventildichtungen	
Str	ategie = Automatisch (ab SW V61)	
Schließkraft für	Normale Ventile	Dieser Parameter bestimmt	
	Ventile mit hoher Federkraft	die Schließkraft für die 0 %	
		Position.	
Strategie = mit definiertem Ventilhub (ab SW V61)			
Schließkraft für	Normale Ventile	Siehe oben.	
	Ventile mit hoher Federkraft		
Ventilhub	2 mm, 3 mm , 4 mm,	Hier wird der Fahrweg von	
	5 mm, 6 mm	der 0% zur 100 % Position	
		manuell festgelegt.	

Siehe auch: Installation und automatische Adaption (Eichfahrt)

Fortsetzung

Bezeichnung	Werte	Bedeutung
Art der Ventildichtung	Standard-Ventildichtung	Dieser Parameter sollte nur
	Ventil mit harter Dichtung	geändert werden, wenn das
	Ventil mit weicher Dichtung	Ventil bei niedrigen
	Ventil mit mittelweicher	Stellgrößen nicht öffnet.
	Dichtung	(siehe <u>Troubleshooting</u>)
Ventilkennlinie	typische Kennlinie	für alle gängige Ventiltypen
	eigene Kennlinie	für Spezialventile mit
		bekannter Kennlinie
	lineare Kennlinie	für hochwertige Ventile
Minimale Stellgröße	0%	Kleinste Ventilposition die
	5%	angefahren wird
	10%	
	15%	
	20%	Dieser Parameter
	25%	Vernindert ein Pfeifen des
	30%	Ventils bei zu kleiner
	40%	Durchflussmenge.
der minimalen Stallgräße	0%	Bei jeder Stellgröße, die
der minimalen Stengröbe		light call Chappe drive out
		negt, son Cheops unve au
		0% failten
	0% - 0% sonst min Stellgröße	Bei jeder Stellgröße, die
	$0^{\prime\prime}$ = 0 $^{\prime\prime}$ soust min. Stengrouse	unter dem Minimalwert
		liegt fährt Cheops drive auf
		die Stellung der zuvor
		festgelegten minimalen
		Stellgröße Erst bei
		Stellgröße 0% wird das
		Ventil vollständig
		geschlossen.
Maximale Stellgröße	60%	Höchste Ventilposition die
8	70%	angefahren wird.
	75%	Tipp: Da die meisten
	80%	Ventile ihren Durchfluss
	85%	zwischen 60% und 100%
	90%	nicht mehr verändern, kann
	95%	die Positionierhäufigkeit
	100%	durch die Angabe einer
		maximalen Stellgröße von
		60% reduziert werden.

Fortsetzung

Bezeichnung	Werte	Bedeutung
Fahren in neue Ventilposition	immer genau positionieren	Das Ventil wird bei jeder Stellgrößenänderung neu positioniert.
	bei Änderung der Stellgr. >1 % bei Änderung der Stellgr. >2 % bei Änderung der Stellgr. >3 % bei Änderung der Stellgr. >5 % bei Änderung der Stellgr. >7 % bei Änderung der Stellgr. >10 % bei Änderung der Stellgr. >15 %	Das Ventil wird immer erst dann nachpositioniert, wenn sich die Stellgröße gegenüber der letzten Positionierung um mehr als den eingestellten Wert verändert hat. Damit können häufige kleine Positionierungsschritte unterdrückt werden Wichtig: Ein zu hoher Wert kann die Temperaturregelung beeinträchtigen

3.4.5 Eigene Ventilkennlinie

Profi-Einstellung für spezielle Ventile.

Diese Parameterseite erscheint nur wenn auf der Seite "Geräteeinstellungen" eine eigene Ventilkennlinie gewählt wurde

Anhand der Kennlinie des Ventils (Herstellerunterlagen) kann hier das Verhalten des Stellantriebes genau angepasst werden.

Dieser Parameter ermöglicht die Anpassung von Cheops drive an ein Ventil über 9 Punkte der Kennlinie (10%...90%). Für jeden Punkt wird eingestellt bei wie viel % Ventilhub eine bestimmte Durchflussmenge erreicht wird.

Tabelle 7	
-----------	--

Bezeichnung	Werte	Bedeutung
Ventilhub in % für 10 %	199 (10)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		10% erreicht?
Ventilhub in % für 20 %	199 (20)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		20% erreicht?
Ventilhub in % für 30 %	199 (30)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		30% erreicht?
Ventilhub in % für 40 %	199 (40)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		40% erreicht?
Ventilhub in % für 50 %	199 (50)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		50% erreicht?
Ventilhub in % für 60 %	199 (60)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		60% erreicht?
Ventilhub in % für 70 %	199 (70)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		70% erreicht?
Ventilhub in % für 80 %	199 (80)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		80% erreicht?
Ventilhub in % für 90 %	199 (90)	Bei wie viel % Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
		90% erreicht?

Die Werte in Klammern stehen für ein lineares Ventil.

In Diagramm 1 ist eine Ventilkennlinie abgebildet, wie sie in der Praxis häufig vorkommt. In dieser Kennlinie ist bei 10% Ventilhub bereits ein Durchfluss von 30% vorhanden. Bei 50% Ventilhub beträgt der Durchfluss über 80%.

Diagramm 1

Ideal für die Regelung wäre eine lineare Kennlinie wie sie in Diagramm 2 abgebildet ist. Mit Hilfe der Eingabe einer eigenen Kennlinie kann eine nichtlineare Kennlinie linearisiert werden.

Dazu müssten aus Diagramm 1 die Ventilpositionen (Hub) bei 10, 20...90% Durchfluss entnommen und in die Parameterseite "eigene Kennlinie" eingetragen werden.

Lineare Ventilkennlinie 100% 90% 80% 70% Durchfluss 60% 50% 40% 30% 20% 10% 0% 0% 20% 40% 60% 80% 100% Ventilposition

Diagramm 2

3.4.6 Lineare Ventilkennlinie

Diese Einstellung soll ausschließlich für Ventile verwendet werden, die ausdrücklich als linear gekennzeichnet sind.

Hinweis: In dieser Tabelle werden die Werte nur angezeigt und können nicht geändert werden.

Bezeichnung	Werte	Bedeutung
Ventilhub in % für 10 %	10	Bei 10% Ventilhub wird ein
Volumenstrom (199)		Volumenstrom von 10%
Ventilhub in % für 20 %	20	erreicht, bei 20% Ventilhub
Volumenstrom (199)		wird ein Volumenstrom von
Ventilhub in % für 30 %	30	20% erreicht usw.
Volumenstrom (199)		
Ventilhub in % für 40 %	40	
Volumenstrom (199)		
Ventilhub in % für 50 %	50	
Volumenstrom (199)		
Ventilhub in % für 60 %	60	
Volumenstrom (199)		
Ventilhub in % für 70 %	70	
Volumenstrom (199)		
Ventilhub in % für 80 %	80	
Volumenstrom (199)		
Ventilhub in % für 90 %	90	
Volumenstrom (199)		

4 Inbetriebnahme

WICHTIGE HINWEISE:

- Bei Wartungsarbeiten am Heizkörper soll der Stellantrieb immer abmontiert werden und das Ventil anderweitig sicher geschlossen werden (Original-Bauschutzkappe usw..). Durch die Regelung oder durch den Ventilschutz könnte das Ventil unerwartet geöffnet werden und dadurch ein Wasserschaden entstehen.
- Beim Herunterladen der Applikation muss Cheops bereits auf dem Ventil montiert sein, da sonst keine Adaption stattfinden kann

4.1 Installation und automatische Adaption (Eichfahrt)

Zuerst wird das Gerät mit dem passenden Adapterring auf das Ventil gesteckt. Danach kann die Busspannung angelegt werden.

Dadurch wird die Adaption (Eichfahrt) automatisch gestartet.

Wann erfolgt der Adaptionsvorgang?

Die automatische Adaption erfolgt erstmals nach dem Anlegen der Busspannung in der Baustellenfunktion, ansonsten nach jedem Herunterladen der Applikation.

Eine erneute Eichfahrt wird nach Reset und im Laufe der Heizperiode in regelmäßigen Abständen durchgeführt.

Um die Veränderungen der <u>Ventileigenschaften</u> im Laufe der Zeit zu kompensieren (Alterung der Gummidichtung) wird das Ventil regelmäßig automatisch nachgemessen.

HINWEISE:

- Wird ein bereits adaptiertes Gerät auf ein anderes Ventil gesteckt, so muss die Adaption durch Herunterladen der Applikation neu durchgeführt werden.
- Nach einem Download sind die zuvor gespeicherten Positionen gelöscht. Die Eichfahrt wird aufgrund der Plausibilitätsprüfung 2x durchgeführt.

4.2 Eichstrategien

Ab Software V61 wurden 2 zusätzliche Eichstrategien eingeführt. Ziel der Eichstrategien ist die Anpassung an die größtmögliche Anzahl verschiedener Ventile.

Die Auswahl der Eichstrategie erfolgt durch Eingabe im Parameter "Strategie zur Ventilerkennung"

4.2.1 Strategie 1, Standard

Bei der Eichfahrt (z.B. nach Reset) wird das Ventil vermessen und die Position für "Ventil offen" und Ventil geschlossen" gespeichert. Nach Download wird die Eichfahrt 2 mal durchgeführt und die ermittelten Werte auf Plausibilität verglichen. Stimmen die Werte nicht überein, wird die Eichfahrt solange wiederholt bis 2 aufeinander folgende Wertepaare plausibel sind. Diese Werte werden dann gespeichert und für die folgenden Fahrten auf die Positionen verwendet. Bei der Eichfahrt werden die ermittelten Werte mit den zuvor gespeicherten Werten verglichen, so dass der Vorgang bei Plausibilität nur einmal erfolgt.

4.2.2 Strategie 2, Automatisch (Nur für Geräte ab Softwareversion 61)

Bei dieser Variante wird nur die "Auf" Position des Ventils bei der Eichfahrt ermittelt. Um das Ventil zu Schließen fährt der Stellantrieb den Stößel so lange aus, bis er mit der eingestellte Kraft auf das Ventil drückt. Folgende Schließkräfte sind einstellbar:

Schließkraft für	Schließkraft
Normale Ventile	ca. 100 N
Ventile mit hoher Federkraft	ca. 120 N

Es wird empfohlen immer erst die Einstellung "normale Ventile" zu verwenden, diese ist für die meisten Ventile völlig ausreichend.

Erst wenn man damit das Ventil nicht schließen kann, sollte die Einstellung "Ventile mit hoher Federkraft" versucht werden. Dabei kann sich die Stromaufnahme während dem Pressen der Gummidichtung bis auf 15 mA erhöhen.

4.2.3 Strategie 3, mit definiertem Ventilhub. (Nur für Geräte ab Softwareversion 61)

Bei dieser Variante wird nur die Auf Position des Ventils durch Rückrechnen eines festen Wegs von der Schließposition ermittelt. Um das Ventil zu Schließen fährt der Stellantrieb den Stößel so lange aus, bis er mit der eingestellte Kraft (Schließkraft für normale Ventile/Ventile mit hoher Federkraft) auf das Ventil drückt.

Diese Eichstrategie ist vor allem anzuwenden, wenn der Stößel des Stellantriebs, selbst wenn er ganz nach innen gezogen ist, den Ventilstößel berührt und so ein Ausmessen nicht möglich ist. Bei einem völlig unbekannten Ventil ist der Wert **3 mm** mit "Schließkraft für normale Ventile" ein brauchbarer Anfangswert.

Es wird empfohlen immer erst die Schließkraft für normale Ventile zu verwenden. Diese Einstellung ist für die meisten Ventile völlig ausreichend.

Erst wenn sich damit das Ventil nicht schließen lässt, sollte die Einstellung für Ventile mit hoher Federkraft versucht werden. Dabei kann sich die Stromaufnahme während dem Pressen der Gummidichtung bis auf 15 mA erhöhen .

Sollte diese Eichmethode auch nach drei Versuchen fehlschlagen, erscheint das Lauflicht.

4.2.4 LED Anzeige während der Eichfahrt

LEDs	Geräte bis 2008	Geräte ab 2008
4 3 2 1 0	Blinkt solange bis die S inneren Po	pindel in der maximalen sition steht
4 3 2 1 0	Blinkt solange bis die 100 % Position gefunden wurde	Blinkt während dem Abtasten des Ventils
4 3 2 1 0	Blinkt solange bis die 0 % Position gefunden wurde	Blinkt während der Positionsberechnung (kann sehr kurz sein)

4.3 Baustellenfunktion

Solange sich das Gerät im Auslieferungszustand befindet, d.h. solange noch keine Applikation geladen wurde, funktioniert Cheops drive im Baustellenmodus.

Dies bewirkt, dass das Ventil auf 25% geöffnet wird, um das Einfrieren des Heizkörpers sicher zu verhindern.

Dank dieser Funktion ist Cheops drive auf der Baustelle **sofort mit eingeschränkter Funktion einsatzbereit**.

Nach Herunterladen der Applikationssoftware wird die Baustellenfunktion definitiv gelöscht.

Ab diesem Zeitpunkt und Solange keine Stellgröße empfangen wird nimmt Cheops nach Reset eine vordefinierte Position an.

Bis 2008: Cheops öffnet das Ventil auf 25 % *Ab 2008*: Cheops schließt das Ventil vollständig.

Die ETS Datenbank finden Sie auf unserer Downloadseite: http://www.theben.de

4.4 Überprüfung der 0 % Position.

Nach Inbetriebnahme und erfolgreiche Adaption ist es empfehlenswert an einem Heizkörper zu prüfen ob das Ventil sauber schließt.

Dazu ist es notwendig abzuwarten bis der Heizkörper (der sich während der Eichfahrt erwärmt hat) vollständig abkühlen konnte.

Dies kann, je nach Vorlauftemperatur, eine längere Zeit in Anspruch nehmen.

Bitte vergewissern Sie sich, dass während dieser Zeit keine Stellgröße > 0% an Cheops gesendet wird.

Dazu kann sicherheitshalber der Zwangsbetrieb mit 0 % oder der Sommerbetrieb aktiviert werden.

5 Anhang

5.1 Ventile und Ventildichtungen

5.1.1 Ventilaufbau

5.1.2 Ventile und Ventildichtungen

Im Ruhezustand, d.h. wenn der Stößel nicht betätigt wird, wird dieser durch die Feder nach außen gedrückt und das Ventil ist offen (100% Position bei normalem Wirksinn). Wenn der Stößel gedrückt wird, wird die Gummidichtung in den Ventilsitz gepresst und das Ventil ist geschlossen (0% Position bei normalem Wirksinn).

Das Ventil schließt nicht sofort, wenn die Gummidichtung den Ventilsitz berührt, der Stößel muss u.U. je nach Eigenschaften der vorhandenen Dichtung mehrere 1/10mm weiterfahren bis das Ventil wirklich zu ist.

Dieses Verhalten wird durch die Härte, die Form, die Alterung oder eine Beschädigung der Ventildichtung bestimmt.

Um den Einfluss dieser Parameter zu korrigieren kann bei Cheops eine zusätzliche Pressung der Ventildichtung eingegeben werden (siehe auch <u>Troubleshooting</u>).

Vorsicht: Um eine Beschädigung der Dichtung zu vermeiden, sollte der Wert maximal in 10er Schritte erhöht werden.

5.2 Begrenzung der Stellgröße

Cheops drive bekommt seine Stellgröße (0..100%) vom Raumtemperaturregler oder von einem Cheops control. Meistens ist es nicht notwendig, die gesamte Bandbreite zwischen 0% und 100% zu verwenden.

5.2.1 Maximale Stellgröße

Im oberen Bereich ändert sich bei vielen Ventilen die Durchflussmenge zwischen 60% und 100% Stellgröße nicht mehr d.h. der Heizkörper heizt bereits bei einer Stellgröße von 60% mit seiner maximalen Leistung.

Folglich kann das Nachstellen des Stellantriebs im oberen Bereich ggf. ohne Nachteile unterdrückt und somit die Positionierhäufigkeit deutlich verringert werden.

5.2.2 Minimale Stellgröße

Das unangenehme Pfeifgeräusch, das manche Ventile bei niedriger Stellgröße entwickeln kann durch die Festlegung einer minimalen Stellgröße (siehe <u>Benutzerdefinierte</u> <u>Ventileigenschaften</u>) vermieden werden.

Stellt man z.B. dieses Verhalten bei einer Stellgröße unter 8% fest, so kann eine minimale Stellgröße von 10% festgelegt werden.

Beim Empfang einer Stellgröße unter dem festgelegten Grenzwert kann Cheops drive auf 2 verschiedene Arten reagieren ("Verhalten bei Unterschreiten der minimalen Stellgröße"):

- Entweder sofort auf 0% fahren (,,0%")
- oder auf der Position der minimalen Stellgröße stehen bleiben und beim Empfang der Stellgröße 0% das Ventil vollständig schließen (0%=0% sonst minimale Stellgröße)

5.3 Maximale Stellgröße ermitteln

5.3.1 Anwendung

Sind in einer Anlage alle Stellantriebe nur schwach geöffnet z.B. einer mit 5%, einer mit 12%, ein anderer mit 7% usw., so kann der Heizkessel seine Leistung herabsetzen weil nur wenig Heizenergie gebraucht wird.

Um das zu gewährleisten braucht der Heizkessel folgende Information:

Wie groß ist die Stellgröße in dem Raum, der momentan den größten Wärmebedarf aufweist?

Genau diese Aufgabe wird bei Cheops Stellantriebe durch die Funktion "maximale Position ermitteln" übernommen.

5.3.2 Prinzip

Die Stellgrößen werden unter allen Teilnehmern (Cheops Stellantriebe) ständig verglichen. Wer eine größere hat als die Empfangene, darf sie senden, wer eine kleinere hat sendet nicht. Um den Verlauf zu beschleunigen sendet ein Stellantrieb umso schneller, je größer der Unterschied zwischen der eigenen und der empfangenen Stellgröße ist. Somit sendet der Stellantrieb mit der höchsten Stellgröße als erster und überbietet alle anderen.

5.3.3 Praxis

Der Stellgrößenvergleich findet über das Objekt 3 ("maximale Position") statt. Dazu wird eine gemeinsame Gruppenadresse für die maximale Position bei jedem Stellantrieb auf das Objekt 3 gelegt.

Um den Stellgrößenvergleich unter den Teilnehmern zu starten muss einer (und nur einer), zyklisch einen Wert auf diese Gruppenadresse senden.

Diese Aufgabe kann wahlweise der Kessel, oder auch einer der Stellantriebe übernehmen. Ist es der Kessel, so muss er den kleinstmöglichen Wert, d.h. 0% senden.

Ist es einer der Cheops Stellantriebe, so muss auf der Parameterseite

"<u>Sicherheit und Zwangsbetrieb</u>" der Parameter "Senden des Objekts "maximale Stellgröße (für Kesselsteuerung)" auf eine beliebige Zykluszeit eingestellt werden. Dieser Stellantrieb sendet dann regelmäßig seine eigene Stellgröße und die anderen können darauf reagieren.

Unabhängig davon, welcher Teilnehmer als Auslöser arbeitet, muss für alle anderen Stellantriebe der Parameter "Senden der maximalen Stellgröße (für Kesselsteuerung)" auf den Default Wert "nur wenn eigene Stellgröße größer ist" eingestellt sein.

5.4 Überwachung der Stellgröße

5.4.1 Anwendung

Fällt der Raumtemperaturregler (RTR) aus, während die zuletzt gesendete Stellgröße 0% war, bleiben alle Ventile unabhängig vom weiteren Temperaturverlauf im Raum zu. Dies kann zu erheblichen Schäden führen wenn z.B. bei Außentemperaturen unter dem Nullpunkt kalte Luft in den Raum eindringt.

Um dies zu vermeiden, kann Cheops drive folgende Funktionen gewährleisten:

- die ordentliche Funktion des Raumtemperaturreglers überwachen
- bei Stellgrößenausfall ein Notprogramm starten
- den Status der Stellgrößenüberwachung senden

5.4.2 Prinzip

Cheops drive überwacht ob innerhalb des parametrierten Zeitwertes mindestens 1 Stellgrößentelegramm empfangen wird und nimmt bei Stellgrößenausfall eine vordefinierte Position ein.

5.4.3 Praxis

Der RTR wird auf zyklisches Senden der Stellgröße parametriert.

Die Überwachungszeit wird bei Cheops drive auf einen Wert gesetzt, der mindestens doppelt so lange ist wie die Zykluszeit des RTR.

Sendet der RTR seine Stellgröße alle 10 Minute, so muss in diesem Fall die Überwachungszeit mindestens 20 Minuten betragen.

Nach Stellgrößenausfall wird der normale Betrieb wieder aufgenommen, sobald eine neue Stellgröße empfangen wird.

5.5 Externe Schnittstelle

Die externe Schnittstelle besteht aus den Eingängen E1 und E2. Beide Eingänge sind über die Anschlussleitung von Cheops herausgeführt.

Die Parametrierung der Eingänge wird auf der Parameterseite "<u>Externe Schnittstelle</u>" vorgenommen.

Der aktuelle Status beider Eingänge wird je nach Parametrierung auf den Bus gesendet und kann somit von anderen Teilnehmern (Cheops control, Raumthermostat usw.) ausgewertet werden.

5.5.1 Anschlüsse

Tabelle 9

Name	Farbe	Funktion
BUS	Schwarz (-)	EID Dueloitung
	Rot (+)	EIB Busiellung
E1	Gelb	Dinär Eingeng für Eggetarkontekt(g)
	Grün	Binar-Eingang für Fensterkontakt(e)
БЭ	Weiß	Pinär Eingeng für Drägenzmelder oder Drägenstester
EZ	Braun	Binar-Enigang für Frasenzinerder oder Frasenziaster

5.5.2 Eingang E1

E1 wird für Fensterkontakte (wenn vorhanden) verwendet.

Die Fensterkontakte können direkt und ohne zusätzliche Spannungsversorgung angeschlossen werden.

5.5.3 Eingang E2

Hier kann ein Präsenzmelder oder -Taster direkt angeschlossen werden

6 Troubleshooting

Achtung: Fehlercodes sind nur in der Version bis 2008 vorhanden.

Verhalten	Fehler-	Mögliche Ursache	Abhilfe	
	Code			
	82	kein Ventil	Gerät auf das Ventil aufstecken und die Applikation erneut laden	
Alle LEDs blinken als Lauflicht von	84	Ventilstößel wird bereits berührt, obwohl die Spindel des Stellantriebs ganz zurückgefahren ist.	Anderen Ventiladapter verwenden. Bitte wenden Sie sich an unseren Kundendienst. Bei ganz zurückgefahrener Spindel muss der Ventilstößel mindestens 3/10mm von der Spindel entfernt sein (siehe unten, <u>Adapterring</u> <u>überprüfen).</u>	
Ventiladaption war nicht erfolgreich	81	Ventilstößel kann sich auch mit der maximalen Kraft (120N) nicht bewegen.	Prüfen, ob Stößel festsitzt, wenn ja, Ventil austauschen.	
	81	Stellantrieb wurde nach Inbetriebnahme mit einem Ventil auf ein anderes Ventil aufgesetzt und muss neu adaptiert werden.	Applikation erneut herunterladen, Stellantrieb wird danach automatisch adaptiert	
	81	Ventildichtung wird zu stark	Zusätzliche Pressung der	
		gepresst	zurücknehmen	
	83	Ventil klemmt	Ventil überprüfen	

Tabelle 10: Fehlercodes (Bis 2008)

Verhalten	Mögliche Ursache	Abhilfe
Ventil schließt bei Stellgröße	Ventildichtung wird nicht	Zusätzliche Pressung der
0% nicht	genügend auf den Ventilsitz	Gummidichtung eingeben.
	gepresst	Vorsicht: Parameter maximal
		in 10er Schritten erhöhen.
		ODER (<i>Ab 2008</i>)
		Eine andere Eichstrategie
		auswählen.
	Ventildichtung ist beschädigt	Ventil austauschen.
Ventil öffnet erst bei einer	Vorhandene Ventildichtung ist	Parameter Art der
unerwartet großen Stellgröße	zu weich	Ventildichtung anpassen.
		Öffnet das Ventil erst bei
		Stellgrößen über:
		$5\% \Rightarrow$ Standard
		Ventildichtung
		$10\% \Rightarrow$ mittelweiche
		Dichtung
		$20\% \Rightarrow$ weiche Dichtung
		wählen
Ventil fährt Stellgrößen unter	Parameter Minimale oder	Parameter minimale und
oder über einen bestimmten	maximale Stellgröße wurde(n)	maximale Stellgröße
Wert nicht an	verändert	überprüfen
Keine Anzeige bzw. keine	Cheops wurde mit der ETS	Gerät neu programmieren:
Eichfahrt nach Reset	Software entladen	Phys. Adresse + Applikation
Fehlermeldung mit ETS	Cheops wurde mit der ETS	Gerät neu programmieren:
Abfrage/Geräteinfo:	Software entladen	Phys. Adresse + Applikation
Ausführungszustand		
\rightarrow läuft nicht		

Tabelle 11: Allgemein (Vor + Ab 2008)

6.1 Fehlercode auslesen

WICHTIG: Der Fehlercode wurde ab 2008 durch den Code für die Eichfahrtstrategie ersetzt.

Bis 2008:

Wenn das Ventil eine Fehlermeldung verursacht und die LEDs als Lauflicht blinken, generiert Cheops einen Fehlercode.

Dieser steht im BCU-Speicher und kann (Inbetriebnahme/Test) wie folgt mit Hilfe der ETS-Software ausgelesen werden.

1. Gerät im Projekt anwählen und auf den Menüpunkt Test / Gerätespeicher klicken

🚆 ETS2 Inbetriebnahme/Test - [Gebäude-Ansicht [Cheops]]					
🚰 Projekt Bearbeiten Inbetriebnahme	Test Optionen Ansicht	t <u>F</u> enster <u>H</u> ilfe			
Offnen Gerät Gewerk Topol. Gruppe	<u>P</u> hys. Adresse Info zu Gerät Geräte <u>s</u> peicher	Speich. Hilfe Ende			
Dhup Adroope Recebroituu	<u>a</u> ruppen Telegramme	Restellnummer Applikation			
Phys. Adresse Beschreibur					
<u>Nr.</u> Gruppenad Funkti	Koppler	Objektname			
01.01.002	cheops drive 731	731 9 200 cheops drive V1.1			

2. Speicherbereich 1FB eintragen, RAM und EEPROM abwählen

2	Cabaltfläsha	<u>L</u> esen	an lali alaan
3.	Schaltflache		anklicken

4. Der Fehlercode erscheint im Ergebnisfenster

Physikalische Adresse	Speicherbereich
• Bus 📼	✓ <u>V</u> on \$1FB
Phys. <u>A</u> dresse: 1.1.1	Bis \$1FB
C Lo <u>k</u> al	EEPR <u>O</u> M
	□ BA <u>M</u>
Speicher:	E <u>x</u> terner Speicher
- Selektierter Speicherber	reich
00 01 02 03 04 05 0	D6 07 08 09 0A 0B 0C 0D 0E 0F
0x01F0	00
	FEHLERCODE
•	

Code	Name
00	kein Fehler
81	Überstrom-Abschaltung
82	Ventil nicht gefunden
83	Ventil bewegt sich nicht
84	Hub ist zu kurz

6.2 Endpositionen überprüfen

Die beim Adaptionsvorgang gespeicherten Endpositionen können genauso wie die Fehlernummern mit der ETS Software ausgelesen werden.

Die innere Anschlagsposition (Spindel eingefahren, Ventil offen) ist unter der Adresse \$1FC und die äußere unter \$1FD im Hex-Format abgelegt.

Nach Herunterladen der Applikation werden diese Werte zurückgesetzt (d.h. 1FC = 00 und FD = FF).

Nach erfolgreicher Adaption werden die gefundenen Anschlagspositionen dort eingetragen. Steht nach der Adaption in beiden Adressen 00, so war die Adaption nicht erfolgreich.

Zum Ermitteln der Anschlagspositionen in Millimeter werden die Werte in dezimal umgewandelt und durch 20 geteilt.

Rechenbeispiel:

Tabelle 13

Position	Ventil	Adresse	Hexadezimal-	entspricht	Ergebnis
			Wert	Dezimalwert	Dezimalwert/20 =
Innerer Anschlag	offen	\$1FC	24	36	1,8 mm
Äußerer Anschlag	zu	\$1FD	61	97	4,85 mm

Der Hub errechnet sich aus den beiden Werten wie folgt:

Hub = äußerer Anschlag – innerer Anschlag

In unserem Beispiel: Hub = 4,85mm - 1,8mm = 3,05mm

Grenzwerte für eine erfolgreiche Adaption

Folgende Werte müssen eingehalten werden:

Innerer Anschlag		Äußerer	Anschlag	Hub	
Мав	Hex-Wert	Maß Hex-Wert		Мав	Hex-Wert
≥ 0,3mm	≥ 6	≤ 7,5mm	≤ 96	≥ 1,2mm	≥ 18

6.3 Adapterring überprüfen

6.3.1 Im gedrückten Zustand

Vor + *Ab* 2008: Der Abstand zwischen Oberkante des Adapters und Oberkante des Stößels im gedrückten Zustand darf 2,7 mm nicht überschreiten.

6.3.2 Im ungedrückten Zustand

Bis 2008: Das Höchstmaß zwischen Oberkante Adapterring und Ende des Stößels beträgt 4,7mm.

Wird dieses Maß überschritten, so muss ein anderer Adapterring verwendet werden.

Ab 2008: Bei einem Maß bis max. 4,7 mm können alle Eichstrategien verwendet werden.

Ab 2008: Bei Verwendung der 3. Eichstrategie ist ein Maß von bis zu 7 mm möglich. Achtung: Bei einem Maß > 4,7 mm kann das Ventil nicht mehr zu 100 % öffnen. Dies ist in den meisten Fällen nicht relevant, da der Durchfluss vieler Ventile bereits bei halber Öffnung schon ausreichend ist.

Genutzt werden kann nur ein Hub bis 4,7 mm, es muss also unter Berücksichtigung des verbleibenden Hubs und der Ventilkennlinie abgeschätzt werden, ob der Ventiladapter geeignet ist.

6.4 Auslesen der Software Versionsnummer

Cheops zeigt die aktuelle Softwareversion mit den LEDs an.

Diese wird nach Reset als Binärzahl in 3 Stufen angezeigt.

- 1. Stufe: Vollanzeige: Alle LEDs = AN
- 2. Stufe: LED 0 ist AN und die oberen 4 Bits werden ausgegeben (= Hi-Nibble, Wertigkeit: Siehe Tabelle)
- 3. Stufe: LED 0 ist AN und die unteren 4 Bits werden angezeigt (= Lo-Nibble).

 LEDs
 Wertigkeit

 4
 $8 (=2^3)$

 3
 $4 (=2^2)$

 2
 $2 (=2^1)$

 1
 $1 (=2^0)$

 0
 keine

Die Wertigkeit der einzelnen LEDs ist wie folgt abzulesen:

Die Zahl ergibt sich jeweils aus der Summe der Wertigkeiten der leuchtenden LEDs 1..4.

LED 0 wird nicht berücksichtigt.

6.4.1 Beispiele verschiedener Versionen

	Geräte ab 2008	Geräte	bis 2008	
Beispiel 1	Beispiel 2	Beispiel 3	Beispiel 4	Beispiel 5
Version 044	Version 061	Version 063	Version 110	Version 121
= \$2C	= \$3D	= \$3F	= \$6E	= \$79
(1 Leiterplatte)	(1 Leiterplatte)	(1 Leiterplatte)	(2 Leiterplatten)	(2 Leiterplatten)
	1. St	ufe = Alle LED	s AN	
4 3 2 1 0	4 3 2 1 0	4 3 2 1 0	4 3 2 1 0	4 3 2 1 0
	2.	Stufe = Hi-Nib	ble	U.
4 3 2 1 0	4 3 2 1 0	4 3 2 1 0	4 3 2 1 0	4 3 2 1 0
	3.	Stufe = Lo-Nib	ble	
4 3 2 1 0	4 3 2 1 0	4 3 2 1 0	4 3 2 1 0	4 3 2 1 0
00101100	00111101	00111111	01101110	01111001
= \$2C	=\$3D	= \$3F	= \$6E	= \$79

7 Glossar

7.1 Ventilhub

Mechanischer Weg der zwischen beiden Endstellungen, d.h. 0% (Ventil geschlossen) und 100% (Ventil ganz offen) zurückgelegt wird (siehe <u>Skizze Ventilaufbau</u>).